Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Microb Genom ; 9(2)2023 02.
Article in English | MEDLINE | ID: mdl-36820832

ABSTRACT

To date, little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, on the upper respiratory tract (URT) microbiota over time. To fill this knowledge gap, we used 16S ribosomal RNA gene sequencing to characterize the URT microbiota in 48 adults, including (1) 24 participants with mild-to-moderate COVID-19 who had serial mid-turbinate swabs collected up to 21 days after enrolment and (2) 24 asymptomatic, uninfected controls who had mid-turbinate swabs collected at enrolment only. To compare the URT microbiota between groups in a comprehensive manner, different types of statistical analyses that are frequently employed in microbial ecology were used, including ⍺-diversity, ß-diversity and differential abundance analyses. Final statistical models included age, sex and the presence of at least one comorbidity as covariates. The median age of all participants was 34.00 (interquartile range=28.75-46.50) years. In comparison to samples from controls, those from participants with COVID-19 had a lower observed species index at day 21 (linear regression coefficient=-13.30; 95 % CI=-21.72 to -4.88; q=0.02). In addition, the Jaccard index was significantly different between samples from participants with COVID-19 and those from controls at all study time points (PERMANOVA q<0.05 for all comparisons). The abundance of three amplicon sequence variants (ASVs) (one Corynebacterium ASV, Frederiksenia canicola, and one Lactobacillus ASV) were decreased in samples from participants with COVID-19 at all seven study time points, whereas the abundance of one ASV (from the family Neisseriaceae) was increased in samples from participants with COVID-19 at five (71.43 %) of the seven study time points. Our results suggest that mild-to-moderate COVID-19 can lead to alterations of the URT microbiota that persist for several weeks after the initial infection.


Subject(s)
COVID-19 , Microbiota , Humans , Adult , Middle Aged , SARS-CoV-2 , Respiratory System
2.
J Virol ; 97(2): e0147822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36656015

ABSTRACT

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Subject(s)
COVID-19 , Gene Expression , Respiratory Mucosa , SARS-CoV-2 , Viral Load , Adult , Humans , Chemokines/physiology , COVID-19/immunology , COVID-19/virology , Gene Expression/immunology , Immunity, Mucosal/immunology , Interferons/physiology , SARS-CoV-2/genetics , Respiratory Mucosa/immunology , Respiratory Mucosa/virology
3.
bioRxiv ; 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36052371

ABSTRACT

Little is known about the relationships between symptomatic early-time SARS-CoV-2 viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate COVID-19. We measured SARS-CoV-2 viral load using qRT-PCR. We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 85% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited co-detection of common respiratory viruses i.e., only the human Rhinovirus (HRV) being identified in 6% of the samples. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusted for age, sex and race. Interestingly, the expression levels of most of these genes plateaued at a CT value of ~25. Overall, our data shows that early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, which potentially could modify COVID-19 outcomes. AUTHOR SUMMARY: Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load and airway mucosal gene expression and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during Spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load with interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load-dependent and may modify COVID-19 outcomes.

5.
BMJ Open Qual ; 11(1)2022 01.
Article in English | MEDLINE | ID: mdl-35101868

ABSTRACT

BACKGROUND: Annual albuminuria screening detects the early stages of nephropathy in individuals with diabetes. Because early detection of albuminuria allows for interventions that lower the risk of developing chronic kidney disease, guidelines recommend annual testing for all individuals with type 2 diabetes mellitus and for those with type 1 diabetes for at least 5 years. However, at the Eskind Diabetes Clinic at the Vanderbilt University Medical Center, testing occurred less frequently than desired. METHODS: A quality improvement team first analysed the clinic's processes, identifying the lack of a systematic approach to testing as the likely cause for the low rate. The team then implemented two successive interventions in a pilot of patients seen by nurse practitioners in the clinic. In the first intervention, staff used a dashboard within the electronic health record while triaging each patient, pending an albuminuria order if testing had not been done within the past year. In the second intervention, clinic leadership sent daily reminders to the triage staff. A statistical process control chart tracked monthly testing rates. RESULTS: After 6 months, annual albuminuria testing increased from a baseline of 69% to 82%, with multiple special-cause signals in the control chart. CONCLUSIONS: This project demonstrates that a series of simple interventions can significantly impact annual albuminuria testing. This project's success likely hinged on using an existing workflow to systematically determine if a patient was due for testing and prompting the provider to sign a pended order for an albuminuria test. Other diabetes/endocrinology and primary care clinics can likely implement a similar process and so improve testing rates in other settings. When coupled with appropriate interventions to reduce the development of chronic kidney disease, such interventions would improve patient outcomes, in addition to better adhering to an established quality metric.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Albuminuria/diagnosis , Ambulatory Care Facilities , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Electronic Health Records , Female , Humans , Male , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis
6.
Int Forum Allergy Rhinol ; 12(9): 1137-1147, 2022 09.
Article in English | MEDLINE | ID: mdl-35040594

ABSTRACT

BACKGROUND: The nose is the portal for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, suggesting the nose as a target for topical antiviral therapies. The purpose of this study was to assess both the in vivo and in vitro efficacy of a detergent-based virucidal agent, Johnson and Johnson's Baby Shampoo (J&J), in SARS-CoV-2-infected subjects. METHODS: Subjects were randomized into three treatment groups: (1) twice daily nasal irrigation with J&J in hypertonic saline, (2) hypertonic saline alone, and (3) no intervention. Complementary in vitro experiments were performed in cultured human nasal epithelia. The primary outcome measure in the clinical trial was change in SARS-CoV-2 viral load over 21 days. Secondary outcomes included symptom scores and change in daily temperature. Outcome measures for in vitro studies included change in viral titers. RESULTS: Seventy-two subjects completed the clinical study (n = 24 per group). Despite demonstrated safety and robust efficacy in in vitro virucidal assays, J&J irrigations had no impact on viral titers or symptom scores in treated subjects relative to controls. Similar findings were observed administering J&J to infected cultured human airway epithelia using protocols mimicking the clinical trial regimen. Additional studies of cultured human nasal epithelia demonstrated that lack of efficacy reflected pharmacokinetic failure, with the most virucidal J&J detergent components rapidly absorbed from nasal surfaces. CONCLUSION: In this randomized clinical trial of subjects with SARS-CoV-2 infection, a topical detergent-based virucidal agent had no effect on viral load or symptom scores. Complementary in vitro studies confirmed a lack of efficacy, reflective of pharmacokinetic failure and rapid absorption from nasal surfaces.


Subject(s)
COVID-19 , Common Cold , Antiviral Agents , Detergents , Humans , SARS-CoV-2 , Viral Load
7.
J Pediatr Orthop ; 41(9): e755-e762, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34325445

ABSTRACT

BACKGROUND: Elbow fractures are the most common pediatric fractures requiring operative treatment. To date, few studies have examined what annual factors drive pediatric elbow fracture incidence and no studies have examined which annual factors drive elbow fracture severity or resource utilization. The goal of this study was to not only document the annual patterns of pediatric elbow fracture incidence and severity but also the impact of these patterns on resource utilization in the emergency department, emergency medical service transportation, and the operating room (OR). METHODS: Retrospective cohort study of 4414 pediatric elbow fractures from a single tertiary hospital (2007 to 2017). Exclusion criteria included outside treatment or lack of diagnosis by an orthopaedist. Presentation information, injury patterns, transport, and treatment requirements were collected. Pearson correlations were used to analyze factors influencing fracture incidence, severity, and resource utilization. RESULTS: Pediatric elbow fracture incidence positively correlated with monthly daylight hours, but significantly fewer elbow fractures occurred during summer vacation from school compared with surrounding in school months. While fewer overall fractures occurred during summer break, the fractures sustained were greater in severity, conferring higher rates of displacement, higher risk of neurovascular injury, and greater needs for emergency transportation and operative treatment. Yearly, elbow fractures required 320.6 OR hours (7.7% of all pediatric orthopaedic OR time and 12.3% of all pediatric orthopaedic operative procedures), 203.4 hospital admissions, and a total of 4753.7 miles traveled by emergency medical service transportation to manage. All-cause emergency department visits were negatively correlated with daylight hours, inversing the pattern seen in elbow fractures. CONCLUSION: Increased daylight, while school was in session, was a major driver of the incidence of pediatric elbow fractures. While summer vacation conferred fewer fractures, these were of higher severity. As such, increased daylight correlated strongly with monthly resource utilization, including the need for emergency transportation and operative treatment. This study provides objective data by which providers and administrators can more accurately allocate resources. LEVEL OF EVIDENCE: Level III-Retrospective comparative study.


Subject(s)
Elbow Joint , Fractures, Bone , Orthopedics , Child , Elbow , Elbow Joint/surgery , Fractures, Bone/epidemiology , Fractures, Bone/surgery , Humans , Retrospective Studies
8.
Res Sq ; 2021 May 14.
Article in English | MEDLINE | ID: mdl-34013253

ABSTRACT

The nose is the portal for SARS-CoV-2 infection, suggesting the nose as a target for topical antiviral therapies. Because detergents are virucidal, Johnson and Johnson's Baby Shampoo (J&J) was tested as a topical virucidal agent in SARS-CoV-2 infected subjects. Twice daily irrigation of J&J in hypertonic saline, hypertonic saline alone, or no intervention were compared (n = 24/group). Despite demonstrated safety and robust efficacy in in vitro virucidal assays, J&J irrigations had no impact on viral titers or symptom scores in treated subjects relative to controls. Similar findings were observed administering J&J to infected cultured human airway epithelia using protocols mimicking the clinical trial regimen. Additional studies of cultured human nasal epithelia demonstrated that lack of efficacy reflected pharmacokinetic failure, with the most virucidal J&J detergent components rapidly absorbed from nasal surfaces. This study emphasizes the need to assess the pharmacokinetic characteristics of virucidal agents on airway surfaces to guide clinical trials.

9.
J Allergy Clin Immunol ; 147(4): 1226-1233.e2, 2021 04.
Article in English | MEDLINE | ID: mdl-33577896

ABSTRACT

BACKGROUND: Little is known about the relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the respiratory virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, and the upper respiratory tract (URT) microbiome. OBJECTIVE: We sought to compare the URT microbiome between SARS-CoV-2-infected and -uninfected adults and to examine the association of SARS-CoV-2 viral load with the URT microbiome during COVID-19. METHODS: We characterized the URT microbiome using 16S ribosomal RNA sequencing in 59 adults (38 with confirmed, symptomatic, mild to moderate COVID-19 and 21 asymptomatic, uninfected controls). In those with COVID-19, we measured SARS-CoV-2 viral load using quantitative reverse transcription PCR. We then examined the association of SARS-CoV-2 infection status and its viral load with the ⍺-diversity, ß-diversity, and abundance of bacterial taxa of the URT microbiome. Our main models were all adjusted for age and sex. RESULTS: The observed species index was significantly higher in SARS-CoV-2-infected than in -uninfected adults (ß linear regression coefficient = 7.53; 95% CI, 0.17-14.89; P = .045). In differential abundance testing, 9 amplicon sequence variants were significantly different in both of our comparisons, with Peptoniphilus lacrimalis, Campylobacter hominis, Prevotella 9 copri, and an Anaerococcus unclassified amplicon sequence variant being more abundant in those with SARS-CoV-2 infection and in those with high viral load during COVID-19, whereas Corynebacterium unclassified, Staphylococcus haemolyticus, Prevotella disiens, and 2 Corynebacterium_1 unclassified amplicon sequence variants were more abundant in those without SARS-CoV-2 infection and in those with low viral load during COVID-19. CONCLUSIONS: Our findings suggest complex associations between SARS-CoV-2 and the URT microbiome in adults. Future studies are needed to examine how these viral-bacterial interactions can impact the clinical progression, severity, and recovery of COVID-19.


Subject(s)
COVID-19/microbiology , COVID-19/virology , Microbiota , Respiratory System/microbiology , SARS-CoV-2 , Viral Load , Adult , Biodiversity , Case-Control Studies , Female , Host Microbial Interactions , Humans , Male , Microbiota/genetics , Middle Aged , Pandemics , RNA, Ribosomal, 16S/genetics , Species Specificity
10.
Front Cell Infect Microbiol ; 11: 781968, 2021.
Article in English | MEDLINE | ID: mdl-35141167

ABSTRACT

Background: The upper respiratory tract (URT) is the portal of entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and SARS-CoV-2 likely interacts with the URT microbiome. However, understanding of the associations between the URT microbiome and the severity of coronavirus disease 2019 (COVID-19) is still limited. Objective: Our primary objective was to identify URT microbiome signature/s that consistently changed over a spectrum of COVID-19 severity. Methods: Using data from 103 adult participants from two cities in the United States, we compared the bacterial load and the URT microbiome between five groups: 20 asymptomatic SARS-CoV-2-negative participants, 27 participants with mild COVID-19, 28 participants with moderate COVID-19, 15 hospitalized patients with severe COVID-19, and 13 hospitalized patients in the ICU with very severe COVID-19. Results: URT bacterial load, bacterial richness, and within-group microbiome composition dissimilarity consistently increased as COVID-19 severity increased, while the relative abundance of an amplicon sequence variant (ASV), Corynebacterium_unclassified.ASV0002, consistently decreased as COVID-19 severity increased. Conclusions: We observed that the URT microbiome composition significantly changed as COVID-19 severity increased. The URT microbiome could potentially predict which patients may be more likely to progress to severe disease or be modified to decrease severity. However, further research in additional longitudinal cohorts is needed to better understand how the microbiome affects COVID-19 severity.


Subject(s)
COVID-19 , Microbiota , Adult , Bacteria , Humans , Respiratory System , SARS-CoV-2
12.
Mol Genet Genomic Med ; 8(7): e1275, 2020 07.
Article in English | MEDLINE | ID: mdl-32329193

ABSTRACT

BACKGROUND: Little is known about the impact of reclassification on patients' perception of medical uncertainty or trust in genetics-based clinical care. METHODS: Semistructured telephone interviews were conducted with 20 patients who had received a reclassified genetic test result related to hereditary cancer. All participants had undergone genetic counseling and testing for cancer susceptibility at Vanderbilt-Ingram Cancer Center Hereditary Cancer Clinic within the last six years. RESULTS: Most of the participants did not express distress related to the variant reclassification and only a minority expressed a decrease in trust in medical genetics. However, recall of the new interpretation was limited, even though all participants were recontacted by letter, phone, or clinic visit. CONCLUSION: Reclassification of genetic tests is an important issue in modern healthcare because changes in interpretation have the potential to alter previously recommended management. Participants in this study did not express strong feelings of mistrust or doubt about their genetic evaluation. However, there was a low level of comprehension and information retention related to the updated report. Future research can build on this study to improve communication with patients about their reclassified results.


Subject(s)
Attitude , Genetic Counseling/psychology , Genetic Predisposition to Disease/classification , Neoplasms/genetics , Patients/psychology , Adult , Aged , Comprehension , Female , Genetic Predisposition to Disease/psychology , Genetic Testing/methods , Humans , Male , Middle Aged , Surveys and Questionnaires
13.
J Genet Couns ; 29(1): 18-24, 2020 02.
Article in English | MEDLINE | ID: mdl-31553110

ABSTRACT

Patients at risk for hereditary cancer syndromes sometimes decline clinically appropriate genetic testing. The purpose of the current study was to understand what preferences, concerns, and desires informed their refusal as well as their current level of interest in being tested. We interviewed patients who had been seen in a hereditary cancer clinic at Vanderbilt University Medical Center and had declined genetic testing. In all, 21 in-depth, semi-structured qualitative interviews were conducted. Although patients provided many reasons for declining testing, they most often cited their psychosocial state at the time of the initial invitation to participate in genetic testing as their reason for refusal. The majority (67%) said that they either would or had changed their mind about testing if/when their clinicians 'mentioned it again'. Patients at risk for hereditary cancer who refuse testing at the time of genetic counseling may later change their mind. In particular, if a patient declines testing around the time of a major medical diagnosis or intervention, clinicians who are providing ongoing care may want to raise the topic afresh after the patient has had time to recover from initial distress related to diagnosis or treatment. Strategies to prompt clinicians to have these conversations are suggested.


Subject(s)
Genetic Counseling/psychology , Genetic Testing , Neoplastic Syndromes, Hereditary/genetics , Adult , Communication , Female , Humans , Longitudinal Studies , Male , Middle Aged , Neoplastic Syndromes, Hereditary/psychology
14.
Cell Mol Gastroenterol Hepatol ; 6(3): 257-276, 2018.
Article in English | MEDLINE | ID: mdl-30109253

ABSTRACT

Background & Aims: Chronic inflammation is a predisposing condition for colorectal cancer. Many studies to date have focused on proinflammatory signaling pathways in the colon. Understanding the mechanisms that suppress inflammation, particularly in epithelial cells, is critical for developing therapeutic interventions. Here, we explored the roles of transforming growth factor ß (TGFß) family signaling through SMAD4 in colonic epithelial cells. Methods: The Smad4 gene was deleted specifically in adult murine intestinal epithelium. Colitis was induced by 3 rounds of dextran sodium sulfate in drinking water, after which mice were observed for up to 3 months. Nontransformed mouse colonocyte cell lines and colonoid cultures and human colorectal cancer cell lines were analyzed for responses to TGFß1 and bone morphogenetic protein 2. Results: Dextran sodium sulfate treatment was sufficient to drive carcinogenesis in mice lacking colonic Smad4 expression, with resulting tumors bearing striking resemblance to human colitis-associated carcinoma. Loss of SMAD4 protein was observed in 48% of human colitis-associated carcinoma samples as compared with 19% of sporadic colorectal carcinomas. Loss of Smad4 increased the expression of inflammatory mediators within nontransformed mouse colon epithelial cells in vivo. In vitro analysis of mouse and human colonic epithelial cell lines and organoids indicated that much of this regulation was cell autonomous. Furthermore, TGFß signaling inhibited the epithelial inflammatory response to proinflammatory cytokines. Conclusions: TGFß suppresses the expression of proinflammatory genes in the colon epithelium, and loss of its downstream mediator, SMAD4, is sufficient to initiate inflammation-driven colon cancer. Transcript profiling: GSE100082.


Subject(s)
Carcinoma/immunology , Colitis/immunology , Colorectal Neoplasms/immunology , Inflammation/immunology , Smad4 Protein/immunology , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Carcinoma/etiology , Carcinoma/pathology , Cell Line , Cell Line, Tumor , Colitis/chemically induced , Colitis/complications , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Dextran Sulfate/pharmacology , Humans , Inflammation/chemically induced , Inflammation/complications , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Smad4 Protein/genetics , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...